上海士锋生物科技有限公司
中级会员 | 第14年

13127537090

标准品
培养基
培养基原料 霍乱弧菌诊断血清 大肠艾希氏菌诊断血清 志贺氏菌属诊断血清 沙门氏菌属诊断血清 标准血清,诊断血清 抗生素药敏纸片 微生物配套试剂 微生物生化管 管装培养基 即用型液体培养基 一次性培养基平板 显色培养基 临床培养基 菌种保存培养基 四环素检定、厌氧亚硫酸盐还原杆菌检测培养基 维生素检测培养基 一次性卫生用品卫生检测培养基 罐头食品商业无菌检测培养基 饮用水及水源检测培养基 药品、生物制品检测培养基 化妆品检测培养基 动物细胞培养基 啤酒检验培养基 军团菌检测培养基 支原体检测培养基 小肠结肠炎耶尔森氏菌检验培养基 弯曲杆菌检验培养基 产气荚膜梭菌、肉毒梭菌、厌氧菌检验培养基 阪崎肠杆菌检验培养基 溶血性链球菌检测培养基 李斯特氏菌检测培养基 弧菌检测培养基 乳酸菌、双歧杆菌检测培养基 酵母、霉菌检测培养基 检测培养基 沙门氏菌、志贺氏菌检验培养基 大肠菌群、粪大肠菌群、大肠杆菌及肠杆菌科检测培养基 细菌总数检测,增菌培养基
抗体
生物试剂
细胞
菌株
血清
细胞分离试剂
试剂盒

女人天天干夜夜爽视频 母双杂交技术及其在蛋白质组研究中的应用

时间:2015/4/1阅读:898
分享:

作为后基因组时代出现的新兴研究领域之一,蛋白质组学(proteomics)正受到越来越多的关注。蛋白质组学的研究目标是对机体或细胞的所有蛋白质进行鉴定和结构功能分析。蛋白质组学的研究不局限任何特定的方法。高分辨率的蛋白质分离技术如二维凝胶电泳和液相层析,经典的蛋白质鉴定方法如氨基酸序列分析等,现代质谱技术,基因组学研究的各种手段,现代计算机信息学和计算机网络通讯技术等等,任何可用于蛋白质研究的技术手段,蛋白质组学都可能会采用。它体现的是一个开放的思维和研究方式。

蛋白质-蛋白质的相互作用是细胞生命活动的基础和特征。这种千变万化的相互作用以及由此形成的纷繁复杂的蛋白质网络同样也是蛋白质组学的研究内容,相应的工作也已经开展。

酵母双杂交系统(yeast two-hybrid system)自建立以来已经成为分析蛋白质相互作用的强有力的方法之一。该方法在不断完善,如今它不但可用来在体内检验蛋白质间的相互作用,而且还能用来发现新的作用蛋白质,在对蛋白质组中特定的代谢途径中蛋白质相互作用关系网络的认识上发挥了重要的作用。实验表明双杂交技术在蛋白质组学上的应用是成功的。本文将就双杂交技术的产生、发展及其在蛋白质组研究方面的初步应用作一介绍。

1 蛋白质组学的产生背景

基因组研究自从开展以来已经取得了举世瞩目的成就。在过去几年中,已经陆续完成了包括大肠杆菌、酿酒酵母等十多种结构比较简单的生物的基因组DNA的全序列分析。线虫(C.elegans)的基因组DNA测序工作已基本完成。规模更为庞大的人类基因组计划预期在下一世纪的前几年(2003~2005年)也将完成全部基因组DNA的序列分析。这些进展是非常令人振奋的。但是也随之产生了新问题。大量涌出的新基因数据迫使我们不得不考虑这些基因编码的蛋白质有什么功能这个问题。不仅如此,在细胞合成蛋白质之后,这些蛋白质往往还要经历翻译后的加工修饰。也就是说,一个基因对应的不是一种蛋白质而可能是几种甚至是数十种。包容了数千甚至数万种蛋白质的细胞是如何运转的?或者说这些蛋白质在细胞内是怎样工作、如何相互作用、相互协调的?这些问题远不是基因组研究所能回答得了的。正是在此背景下,蛋白质组学(proteomics)应运而生。

蛋白质组(proteome)一词是马克.威尔金斯(Marc Wilkins)zui先提出来的,zui早见诸于1995年7月的“Electrophoresis"杂志上,它是指一个有机体的全部蛋白质组成及其活动方式。蛋白质组研究虽然尚处于初始阶段,但已经取得了一些重要进展。当前蛋白质组学的主要内容是,在建立和发展蛋白质组研究的技术方法的同时,进行蛋白质组分析。对蛋白质组的分析工作大致有两个方面。一方面,通过二维凝胶电泳得到正常生理条件下的机体、组织或细胞的全部蛋白质的图谱,相关数据将作为待检测机体、组织或细胞的二维参考图谱和数据库。一系列这样的二维参考图谱和数据库已经建立并且可通过联网检索。二维参考图谱建立的意义在于为进一步的分析工作提供基础。蛋白质组分析的另一方面,是比较分析在变化了的生理条件下蛋白质组所发生的变化。如蛋白质表达量的变化,翻译后修饰的变化,或者可能的条件下分析蛋白质在亚细胞水平上的定位的改变等。关于蛋白质组学的介绍可参阅文献。

细胞或组织的蛋白质不是杂乱无章的混合物,蛋白质间的相互作用、相互协调是细胞进行一切代谢活动的基础。蛋白质间的相互作用及作用方式同样也是蛋白质组研究所面临的问题。研究蛋白质间的相互作用有多种方法,常用的如酵母双杂交系统、亲和层析、免疫沉淀、蛋白质交联等。其中,酵母双杂交系统是当前发展迅速、应用广泛的主要方法。

2 酵母双杂交系统的建立与发展

双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明,转录激活因子在结构上是组件式的(modular),即这些因子往往由两个或两个以上相互独立的结构域构成,其中有DNA结合结构域(DNA binding domain,简称为DB)和转录激活结构域(activation domain,简称为AD),它们是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合,但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的DB与大肠杆菌的一个酸性激活结构域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。

Fields等人的工作标志双杂交系统的正式建立。他们以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型,将前者与Gal4的DB结构域融合,另外一个与Gal4的AD结构域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵"(bait)和“猎物"或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用,那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子,从而激活相应基因的转录与表达。这个被激活的、能显示“诱饵"和“猎物"相互作用的基因称之为报道基因(reporter gene)。通过对报道基因表达产物的检测,反过来可判别作为“诱饵"和“猎物"的两个蛋白质之间是否存在相互作用。在此Fields等人采用编码β-半乳糖苷酶的LacZ作为报道基因,并且在该基因的上游调控区引入受Gal4蛋白调控的GAL1序列。这个改造过的LacZ基因被整合到酵母染色体URA3位上。而酵母的GAL4基因和GAL80基因(Gal80是Gal4的负调控因子)被缺失,从而排除了细胞内源调控因子的影响。已经知道在Snf1和Snf2之间存在相互作用。结果发现只有同时转化了Snf1和Snf2融合表达载体的酵母细胞才有β-半乳糖苷酶活性,单独转化其中任何一个载体都不能检测出β-半乳糖苷酶活性。

目前发展起来的各种双杂交系统大多是以Fields等人建立的系统为基础的。这些新系统主要对报道基因、“诱饵"表达载体以及“猎物"表达载体等做了一些改进。其中一个重要改进是引入额外的报道基因,如广泛采用的HIS3基因。经过改造带有HIS3报道基因的酵母细胞,只有当HIS3被启动表达才能在缺乏的选择性培养基上生长。HIS3报道基因的转录表达是由“诱饵"和“猎物"的相互作用所启动的。大多数双杂交系统往往同时使用两个甚至三个报道基因,其中之一是LacZ。这些改造后的基因在启动子区有相同的转录激活因子结合位点,因此可以被相同的转录激活因子(如上述的Gal4蛋白)激活。通过这种双重或多重选择既提高了检测灵敏度又减少了假阳性现象。其他还有针对“诱饵"或“猎物"表达载体等所作的改进,这里不一一详述。

在双杂交鉴定过程中要经过两次转化,这个工作量是相当大的,特别是寻找新的作用蛋白质的时候尤其如此。而且,酵母细胞的转化效率比细菌要低约4个数量级。因此转化步骤就成为双杂交技术的瓶颈。Bendixen等人通过酵母接合型的引用,避免了两次转化操作,同时又提高了双杂交的效率。在酵母的有性生殖过程中涉及到两种配合类型: a接合型和α接合型,这两种单倍体之间接合(mating)能形成二倍体,但a接合型细胞之间或α接合型细胞之间不能接合形成二倍体。根据酵母有性生殖的这一特点,他们将文库质粒转化α接合型酵母细胞,“诱饵"表达载体转化a接合型细胞。然后分别铺筛选平板使细胞长成菌苔(lawn),再将两种菌苔复印到同一个三重筛选平板上,原则上只有诱饵和靶蛋白发生了相互作用的二倍体细胞才能在此平板上生长。单倍体细胞或虽然是二倍体细胞但DB融合蛋白和AD融合蛋白不相互作用的都被淘汰。长出来的克隆进一步通过β-半乳糖苷酶活力进行鉴定。这项改进不仅简化了实验操作,而且也提高了双杂交的筛选效率。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言